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ABSTRACT 

Equations derived in Part I [D. E. Martire, J. Chromatogr., 461 (1989) 1651 are used to calculate 
distribution functions, average densities and column profiles for supercritical fluid chromatography with 
carbon dioxide as the mobile phase. An approximation for the column-average capacity factor in terms of 
the local capacity factor is evaluated and conditions are given for its applicability. 

INTRODUCTION 

General equations have been derived for the spatial and temporal density 
distribution functions, average densities and column profiles of the mobile-phase fluid, 
and for the observed (apparent) capacity factors and column profiles of the solute 
components [ 11. These equations are valid for all conditions where Darcy’s law is valid, 
i.e., as long as the flow is laminar and not turbulent. It has been shown in Part I [l] that 
the application of these equations is straightforward in the cases of gas and liquid 
chromatography. In capillary supercritical fluid chromatography (SFC), pressure 
drops over the length of the column are usually so small that the average density is close 
to the inlet density. Thus, the most interesting application is in packed-column SFC 
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because of the large pressure drops involved and the non-ideality and compressibility 
of the mobile phase. 

In the present study, the equations are applied to SFC with carbon dioxide as the 
mobile phase. In order to apply these equations, reliable density, isothermal 
compressibility and viscosity data for the mobile phase are needed. A modified 
Benedict-WebbRubin (BWR) equation of state [2] was used to generate densities and 
isothermal compressibilities; available viscosity data were used to fit a polynomial 
expression for viscosity in terms of density and temperature. For a given inlet pressure, 
the outlet pressure will depend on several variables: the column length, type and 
porosity of packing, type of back-pressure regulator or restrictor used, .etc. In this 
study, various inlet and outlet pressures were assumed and distribution functions, 
density averages and column profiles for the mobile phase were calculated. In order to 
generate average capacity factors and column profiles for the solutes, an expression for 
the local capacity factor was assumed. 

The following equations from ref. 1 (written here in reduced form) are used in 
this study: 
The spatial distribution function D,(pR) 

The temporal distribution function D,(pR) 

The spatial average mobile phase density <PR>~ 

PR.I PR.I 

<PR>x= j k'R@&'R)d~R/ f &(PR)dPR 

Pit.0 PR.0 

The temporal average mobile phase density, < PR > f 

VR.i PR,i 

<PR>t = j pR~th'R)‘-bR/ s Dt(PR)dPR 

PR.0 Pit.0 

The observed capacity factor, <k’ > f 

PR,i PR.i 

<k’ > t = f ~‘~tb’dd~d 1 ~tb&brc 

PR.0 Pit.0 

The fractional distance, x/L, when the local mobile phase density is PR 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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The fractional time, r,/t,, an unretained solute has spent on the column when the local 
density is PR 

The fractional solute migration time, r,/ts, at pR 

PR,i 

dts = j (1 + k’)~dPn)dPdp;‘(l + k’)Dt(PddP, (8) 
PR PR.0 

In these equations the density (p), pressure (P) and viscosity (q) are normalized 
to reduced variables: PR = p/p,,, PR = P/PO, qR = y/f’ where per = 0.468 g/cm3, 
T,, = 304.2 K, P,, = 73.84 bar and q“ is chosen as the viscosity at one bar for a given 
temperature. L refers to the column length measured from the inlet, t, the holdup time 
of an unretained solute, t, the solute retention time, k’ the local capacity factor; the 
subscripts i and o refer to inlet and outlet conditions, respectively. The quantity 
VR ‘(dPR/dpR)T which appears in both distribution functions will be referred to as the 
“core” of the distribution function. 

The observed or apparent capacity factor is related to the local capacity factor 
and conditions are given for an approximation for the observed capacity factor in 
terms of the temporal average density. In addition, the separation factor, CI, for two 
solutes a and b is calculated from 

THE EQUATION OF STATE 

The Jacobsen-Stewart modification [2,3] of the BWR equation of state was used 
to generate reliable density (p) and isotherm derivative, (dPR/i3pR)T, predictions: 

P = pRT + 5 NiXi 
i=l 

(10) 

(aP/dp)~ = RT + y NiXi (11) 
i=l 

where X,! = (aXi/LJp)r. 
The Ni coefficients for CO2 were obtained from ref. 3 and are reproduced in 

column 2 of Table I. Expressions for the Xi and Xi are given in columns 3 and 4 of Table 
I. p is the density in mol/l; P the pressure in bar, T the temperature in Kelvin; R = 
0.083144 bar. l/mol. K. The equations are applicable for a temperature range from 
215 to 1100 K and from 0 to 3000 bar with an overall accuracy of 0.3% in density [3]. 
Since the equation is explicit in pressure, density predictions were obtained using the 
bisection method [4]. 



COEFFICIENTS AND EXPRESSIONS OF EXTENDED BWR EQUATION FOR CO,” 

F = exp(- Gp*); G = 0.88999644. IO-'; F' = -2.OFpG; F21 = 3.OFp’ + F’p3; F22 = 5.0Fp4 + F’p5; 
F23 = 7.0Fp6 + F’p’; F24 = 9.OFp’ + F’p9; F25 = II.OFp’” + F’p”; F26 = 13.0F~‘~ + F’pi3. 
- 
i N x X’ 
- 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

-0.9818510658. 1O-2 p2T 2.0pT 
0.9950622673 p2T'/2 2.0~ T”2 

-0.2283801603’ lo2 P2 2.op 
0.2818276345’ lo4 P’IT 2.0p/T 

-0.3470012627. lo6 P21F 2.opiT2 
0.3947067091. 1O-3 p3T 3.0p2T 

-0.3255500001 P3 3.op2 
4.843200831 p3/T 3.0p2/T 

-0.3521815430. lo6 P3/F 3.0pz/T2 
-0.3240536033. 1O-4 p4T 4.0p3T 

0.4685966847. IO-’ P4 4.op3 
-7.545470121 P?T 4.0p3/T 
-0.381894354. 1O-4 P5 5.op4 
-0.4421929339.10-’ p6/T 6.0p5/T 

0.5169251681. lo2 P6/F 6.0p5/p 
0.2124509852. lo-’ P’/T 7.0p6/T 

-0.2610094748’ IO-* P’IT 8.Op’/T 
-0.888533389. IO-’ P8/T2 8.0p7/T2 

0.1552261794, 1O-2 P9/F 9.0ps/T2 
0.4150910049~ lo6 p3Flp F2llTZ 

-0.1101739675. 10’ p3F/T3 F2l/T3 
0.2919905833. lo4 P'FI~ F22/TZ 
0.1432546065 10’ P’F/~ F22jp 
0.1085742075~102 P’FI p F23/T2 

-0.247799657 IO3 p7F/T3 F23jT3 
0.1992935908. 10-l p9Fip F24/T2 
0.1027499081. lo3 p9W'- n4/T’ 
0.3776188652’ 1O-4 p”F/p F25/T2 

-0.3322765123. 1O-2 p”FIT3 Es/T3 
0.1791967071. IO-’ p’=F/p F26lp 
0.9450766278’ 1O-5 p13F/T3 F26lT3 

-0.1234009431. 1O-2 P’~F/~ F26/p 
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TABLE I 

o See eqns. 10 and 11. 

VISCOSITY 

Viscosities were obtained by fitting tabulated viscosity data [5] to the equation 

qR= i i ci,jT&k (12) 
i=Oj=O 

The ci,j coefficients for CO2 are listed in Table II. The fit is applicable for pressures 
from 40 to 1000 bar over the temperature range 3 15 to 900 K with an average error of 
0.4%. 



SPATIAL AND TEMPORAL COLUMN PARAMETERS IN GC, LC AND SFC. II. 139 

TABLE II 

COEFFICIENTS OF tlR VISCOSITY EQUATION FOR C02, c~,~’ 

i i Ci.j i i Ci.1 

0 0 1.984239055923858 
0 1 - 1.7659788 14900643 
0 2 1.200587190352171 
0 3 -0.3587967344551215 
0 4 3.939799401399628 lo-’ 
1 0 -6.939097844205919 
1 1 12.16864979120884 
1 2 - 7.954279939480736 
1 3 2.311176553431279 
1 4 -0.2499449710969321 
2 0 22.0798196307882 
2 1 -35.92289143102958 
2 2 23.41530455411397 

2 3 -6.962674520424649 
2 4 0.7797272269308236 
3 0 - 15.836119060967 
3 1 26.17032056108262 
3 2 - 17.42070707993796 
3 3 5.402335087741039 
3 4 -0.6352935554972202 
4 0 4.337989765743405 
4 1 -7.058859850635407 
4 2 4.866472957964851 
4 3 - 1.607823031693741 
4 4 0.2014049388370968 

’ See eqn. 12. 

For the calculation of reduced viscosity from q/q”, a fit of $’ vs. TR was 
completed, where q” was selected as the viscosity at 1 bar. The relation is 

v]” = i ajTi 
j=O 

(13) 

The ajcoeffkients are given in Table III. Figs. 1 and 2 show the relationship of viscosity 
to pressure and density, respectively. 

THE CORE OF THE DISTRIBUTION FUNCTION 

In order to obtain a tractable expression for the core of the distribution function 
for use in the integral equations, the expression 11; ‘(c?P,/+,J was evaluated using the 
equation of state and tabulated viscosity data [5] and fit to a seventh-order polynomial 

TABLE III 

COEFFICIENTS OF f’ (lOme Ns/m’) VISCOSITY EQUATION FOR COz” 

i uj 

(10e6 Ns/m*) 

0 - 1.842303556958221 
1 19.94110352045899 
2 -3.288620563501078 
3 0.3299574285621828 

* See eqn. 13. 
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Fig. 1. Relationship between reduced viscosity and reduced pressure of CO2 at 320, 350 and 380 K. 

in reduced density at a given temperature. The resulting equation for the core of the 
distribution function is 

$apR/aPR)T = i C( T)jpli 
j=O 

(14) 

The coefficients for selected temperatures from 320 to 500 K are given for CO* in Table 
IV. This method has the advantage of yielding analytically solvable integrals for the 
density averages, but the disadvantage of requiring a temperature-dependent set of 
coefficients. The equation of state and viscosity equations may be used to calculate 
these coefficients at any desired temperature. Alternatively, the integrals may be 
evaluated numerically at any temperature and pressure using the equation of state to 
obtain (dPR/apR)T and eqn. 12 to obtain r&l. 
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Fig. 2. Relationship between reduced viscosity and reduced density of COz at 320, 350 and 380 K. 
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TABLE IV 

COEFFICIENTS OF THE CORE OF THE DISTRIBUTION FUNCTION, t&‘@P&,),, FOR CO* 

W 0 1 2 3 4 5 6 7 

315 3.430721 -5.436177 
318 3.449651 -5.165713 
320 3.468362 - 5.035216 
323 3.507241 -4.981013 

325 3.529547 -4.900966 
328 3.567610 -4.835326 

330 3.594037 -4.805044 
333 3.634926 -4.775353 
335 3.663093 -4.767234 

340 3.735941 -4.779590 
345 3.811424 -4.829204 
350 3.888584 -4.904933 

355 3.966580 -4.996535 

360 4.044703 - 5.094889 

365 4.122378 -5.192201 
370 4.199161 - 5.282081 
375 4.274729 -5.359553 

380 4.348880 -5.421136 
385 4.421507 - 5.464634 

390 4.492589 - 5.489028 

395 4.562169 -5.494315 

400 4.630341 -5.481284 
410 4.762983 -5.406185 
420 4.891684 - 5.278686 

430 5.017609 -5.115442 
440 5.141729 -4.931525 
450 5.264761 -4.738747 
460 5.387171 -4.545277 
470 5.509227 -4.356014 
480 5.631051 -4.173312 
490 5.752686 -3.997791 

500 5.874126 -3.829018 

510 5.995350 - 3.666042 

520 6.116340 - 3.507723 
530 6.237089 - 3.352985 
540 6.357602 - 3.200899 
550 6.477901 - 3.050744 
560 6.598021 - 2.902022 
570 6.718008 -2.754413 

580 6.837917 - 2.607786 
590 6.957805 -2.462108 

600 7.077740 -2.317489 

- 14.063478 
- 14.619629 
- 14.898416 
- 14.660994 
- 14.704797 
- 14.554064 
- 14.400660 
-14.113013 
- 13.876192 
-13.157321 
- 12.292277 
- 11.324438 
- 10.295859 

- 9.245997 
-8.210274 
-7.219233 
- 6.297969 
- 5.465210 
-4.733836 
-4.111053 
-3.598799 
-3.194661 
-2.684254 
-2.504810 
-2.563619 
- 2.769727 
-3.046140 

-3.334909 
- 3.597456 
-3.811609 
- 3.967820 
- 4.064945 
-4.107097 
-4.101016 
-4.054338 
- 3.974493 

-3.868163 
- 3.740895 
- 3.597292 
-3.440735 
- 3.273899 
- 3.098509 

50.004813 -61.078887 
50.386233 -61.179006 
50.693615 -61.520404 
49.710760 -60.361265 
49.488739 -60.065716 
48.740216 -59.183956 
48.137436 - 58.477669 

47.128036 - 57.301045 
46.368154 - 56.417075 
44.218988 - 53.909728 
41.775228 -51.034637 
39.117654 -47.871881 

36.329849 -44.511071 

33.495104 -41.047809 

30.692525 -37.578626 
27.994251 -34.196937 
25.463207 - 30.989408 
23.149812 -28.030595 
21.092105 -25.381855 
19.315239 -23.089491 
17.831406 -21.183243 
16.641477 - 19.677496 

15.098625 - 17.853463 
14.525946 - 17.471506 

14.691491 - 18.248922 

15.344966 - 19.838448 
16.257123 -21.891474 
17.241746 -24.101283 

18.163942 -26.227172 

18.937261 -28.100147 
19.516300 -29.618699 
19.885808 - 30.735909 
20.051584 - 3 1.446624 

20.032035 - 3 1.774063 

19.851937 -31.758491 
19.538255 - 3 1.449228 
19.117157 -30.897801 
18.612604 -30.154598 
18.045621 - 29.266003 
17.433791 -28.273103 
16.791695 -27.211291 

16.130949 -26.110274 

37.082152 -11.123848 1.315836 

37.156443 -11.184187 1.329785 

37.471557 - 11.330728 1.354716 

36.903599 - 11.220950 1.350461 

36.806435 - 11.232691 1.357955 
36.402942 -11.171629 1.359514 
36.057054 -11.105119 1.357108 

35.461413 - 10.978996 1.349891 

34.998493 - 10.872244 1.341962 

33.635421 - 10.531496 1.311594 
32.005334 - 10.090694 1.266392 
30.149953 - 9.560026 1.207156 
28.120857 - 8.954059 1.135399 
25.977564 -8.291338 1.053338 

23.784241 -7.593386 0.963788 
21.606888 -6.883810 0.870070 
19.510516 -6.187295 0.775874 

17.554815 - 5.527916 0.685023 

15.792668 -4.928420 0.601345 

14.268038 -4.409205 0.528503 
13.013900 -3.987211 0.469786 
12.052323 - 3.675652 0.428020 
11.039525 -3.415627 0.403671 
11.193787 - 3.650242 0.465356 
12.347147 -4.339176 0.612149 

14.248806 - 5.395477 0.833515 
16.616550 -6.705176 1.111919 

19.178477 -8.146164 1.425930 

21.702104 -9.603891 1.753273 

24.008383 - 10.981440 2.073214 
25.975777 - 12.205201 2.368296 
27.534386 - 13.225300 2.625066 
28.657725 - 14.014026 2.834337 

29.352199 - 14.562299 2.990911 

29.646665 - 14.875213 3.092957 

29.584628 - 14.968485 3.141461 

29.216445 - 14.864230 3.139390 

28.595194 - 14.588566 3.091189 

27.772556 - 14.168946 3.002157 

26.796665 - 13.632527 2.877999 

25.710798 - 13.005036 2.724506 
24.552744 - 12.309946 2.547261 

The core of the distribution function is shown as a function of pressure and 
density in Figs. 3 and 4, respectively. 
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Fig. 3. Relationship between the “core” of the distribution function and reduced pressure for CO2 at 320, 
350 and 380 K. 

COLUMN AVERAGES 

Typical inlet and outlet pressures were selected and the corresponding densities 
calculated from the equation of state. The positional and temporal average densities 
were calculated using the seventh-order polynomial for the core of the distribution 
function (eqn. 14): 

The mean density 

pR = PR,i + pR,O 

2 

The spatial average density 

380 

0.0 ’ 0 

0.0 0.5 1 .o 1.5 2.0 2.5 
Reduced Density 

Fig. 4. Relationship between the “core” of the distribution function and reduced density for CO2 at 320,350 
and 380 K. 
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The temporal average density 

143 

<PR>~ = E cj-4(PL,i - d,d/j 
j=4 1 

f cj-3(PA,i - d,d/j (17) 
j=3 

Table V summarizes the results for selected outlet and inlet pressures at 320 K. Note 
that for a pressure drop of 50 bar, there is a significant difference between the 
positional and temporal average densities for low outlet densities, but they are 
essentially equal if the outlet density is high. 

COLUMN AVERAGE (OBSERVED) CAPACITY FACTOR 

The observed or apparent capacity factor was calculated assuming the form 

La, = &exp(ap + bp2) for the local capacity factor, where & refers to the 
zero-density value. The constants for this expression were calculated for heptadecane 
and octadecane from ref. 6: 

In A$ = - (4.43 + 0.78411) + [(1.09 + l.676n)/TR] 

a = (0.40 + 0.59%) - (0.97 + 1.44&)/T, 

pi 
(bar) 

PR.i 

- 

80 0.49 70 0.38 
90 0.67 70 0.38 

100 0.96 70 0.38 
110 1.21 70 0.38 
120 1.35 70 0.38 
130 1.44 70 0.38 

110 1.21 100 0.96 
120 1.35 100 0.96 
130 1.44 100 0.96 
140 1.51 100 0.96 
150 1.56 100 0.96 
160 1.60 100 0.96 

140 1.51 130 1.44 
150 1.56 130 1.44 
160 1.60 130 1.44 
170 1.63 130 1.44 
180 1.66 130 1.44 
190 1.69 130 1.44 

b = (0.17 + 0.260n)/TR 

TABLE V 

AVERAGE DENSITIES AT 320 K 
- 

- 
0.44 
0.53 
0.67 
0.80 
0.87 
0.91 

1.08 
1.16 
1.20 
1.23 
1.26 
1.28 

1.48 
1.50 
1.52 
1.54 
1.55 
1.57 

(18) 

<PR>Xb <Prc>rC 

0.44 0.44 
0.51 0.53 
0.62 0.67 
0.76 0:85 
0.88 0.99 
0.97 1.09 

1.10 1.10 
1.19 1.20 
1.26 1.28 
1.31 1.33 
1.35 1.37 
1.39 1.41 

1.48 1.48 
1.50 1.51 
1.53 1.53 
1.55 1.55 
1.57 1.57 
1.59 1.59 

’ See eqn. 15. 
b See eqn. 16. 
’ See ean. 17. 
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where n = number of carbon atoms in the alkane. The numerator in eqn. 5 was 
evaluated numerically using a numerical integration routine [7]. 

The separation factor, CI, for heptadecane and octadecane was calculated from 

c(= 
<k’ > t,c,s 

<k’>f,C,, 
(19) 

The approximation 

<k’> t = k,exp(a<p,>, + b<pi>J 
or 

In <k’> f Z Ink, + a<&>, + b<&>, (20) 

was tested. As expected [ 11, the estimated value is always less than or equal to the value 
for In <k’ > f calculated from eqn. 5, and is essentially equal to the calculated value if 
the outlet density is close to the inlet density (as in capillary SFC) or if the outlet density 
is significantly greater than the critical density (Fig. 5). The estimated c( values are also 
close to the calculated values under these conditions. In general, low densities 
produce higher c( values. For a given outlet pressure, low density drops also produce 
higher CI values. Although high densities and/or high density drops lead to shqrter 
analysis times, large density drops are undesirable because they may lead to greater 
band broadening [8]. As long as the chromatographic conditions are in the region 
where the estimates are close to the calculated values, both In <k’> and c( can be easily 
estimated for a given set of conditions if the local capacity factors are known. The 
temporal average density can be replaced by the arithmetic mean density, thus 
simplifying the calculation. However, the column average density is significantly 
different from the inlet density, so the capacity factor cannot be approximated using 
the inlet density alone. The results are summarized in Table VI where column 1 is the 
temporal average density from Table V. 

4.5 

3.9 

3.3 

27 

21 

-0 3 

b 
‘ 

-10 15 20 25 30 35 40 45 50 55 60 
Pressure Drop (bar) 

Fig. 5. Average capacity factor as a function of pressure drop. (0) Calculated from eqn. 5; (+) estimated 
from eqn. 20. (a) PO = 70 bar; (b) PO = 100 bar; (c) PO = 130 bar. 
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TABLE VI 

CALCULATED AND ESTIMATED In <k’> VALUES 

<Ps’r In <k’> In <k’> In <k’> In <k’> G( G( 
Num.” Est.* Num.” Ekb Num.’ Est.* 

C17 C 17 Cl8 C1s 

P, = 70 bar (P~,~ = 0.38) 
0.44 4.42 4.37 
0.53 3.84 3.56 

0.67 3.25 2.44 
0.85 2.74 1.32 
0.99 2.36 0.59 
1.09 2.08 0.15 

P, = 100 bar (pR,,, = 0.96) 
1.10 -0.23 -0.28 
1.20 -0.55 -0.63 
1.28 -0.72 -0.82 
1.33 -0.84 -0.93 
1.37 -0.92 -1.01 
1.41 -0.97 - 1.06 

P, = 130 bar (P~,~ = 1.44) 
I .48 -1.25 - 1.25 
1.51 -1.26 -1.26 
1.53 -1.27 -1.27 
1.55 - 1.28 - 1.28 
1.57 -1.27 - 1.27 
1.59 -1.27 - 1.27 

4.89 4.83 1.61 1.60 

4.29 3.98 1.57 1.53 

3.69 2.80 1.56 1.43 

3.18 I .62 1.55 1.34 

2.80 0.85 1.55 1.29 

2.51 0.38 1.54 1.26 

-0.02 -0.07 1.24 1.23 

-0.35 -0.44 1.22 1.20 

-0.54 -0.64 1.21 1.19 

-0.66 -0.76 1.20 1.19 
-0.74 -0.84 1.19 1.18 
-0.80 -0.89 1.19 1.18 

- 1.09 - I .09 1.16 1.16 
-1.11 -1.11 1.16 1.16 
-1.12 -1.12 1.16 1.16 
-1.12 -1.12 1.16 1.16 

-1.12 -1.12 1.16 1.16 
-1.12 -1.12 1.16 1.R 

a Numerical integration of eqn. 5. 
b Estimated from eqn. 20. 
’ Determined from numerically integrated values of In <k’ > 
d Determined from estimated values of In i k’ > 

COLUMN PROFILES 

The density decrease over the column was divided into ten equally spaced density 
decrements from the inlet to the outlet density. Profiles for the mobile phase were 
generated using eqns. 6 and 7 and the core of the distribution function: 

xlL = i cj- Z(P6,i - p&/j i cj-2(Pi,i - &0)/i 
j=2 1 j=2 

(21) 

(22) 

The fractional solute migration time was calculated by numerical integration of eqn. 8. 
The results are summarized in Table VII. Note that when the mobile phase has spent 
50% of its time on the column, it has traversed 47% of the column length. At this point, 
the reduced density is 1.11, compared to 1.09, the arithmetic mean density. Hence, the 
mobile phase spends relatively more time in the inlet region of the column. The solutes 
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TABLE VII 

COLUMN PROFILES 

T = 320 K, PO = 100 bar, Pi = 110 bar. 

PR X/L" LILb disc d~s’ ud 
C 17 Cl8 

1.21 0.00 0.00 0.00 0.00 - 
1.19 0.13 0.14 0.12 0.12 1.20 
1.16 0.25 0.21 0.24 0.23 1.21 
1.14 0.37 0.39 0.34 0.33 1.21 
1.11 0.47 0.50 0.44 0.43 1.21 
1.09 0.57 0.60 0.54 0.53 1.21 
1.06 0.66 0.69 0.63 0.62 1.22 
1.04 0.15 0.78 0.72 0.71 1.22 
1.01 0.84 0.85 0.82 0.81 1.23 
0.99 0.92 0.93 0.91 0.90 1.23 
0.96 1 .oo 1.80 1 .oo 1 .oo 1.24 

a See eqn. 21. 
b See eqn. 22. 
’ See eqn. 8. 
d See eqn. 19. 

are moving relatively more quickly because they have a much smaller k’ in the 
higher-density inlet part. The effective separation factor, CI, which is defined as the ratio 
of temporal average capacity factors of the two solutes at a given value of x/L, 
increases as the column is traversed. This does not necessarily imply, however, that 
longer columns will produce better separations. The change in a is a pressure-drop- 
induced effect; the same pressure drop can also cause increased band spreading [8]. 
Indeed, it is conceivable that shorter columns could provide separations with 
resolution equal or superior to that from longer columns. 

CONCLUSIONS 

If the pressure drop over a column is small, or if the outlet density is sufficiently 
greater than the critical density, the arithmetic mean density, the positional average 
density and the temporal average density are nearly identical. The average capacity 
factor can then be related to the local capacity factor and the average density using any 
of the density averages and eqn. 20. However, if the density drop is large and 
encompasses the region where the core of the distribution function goes through 
a minimum (Fig. 4) the average capacity factor must be calculated using eqn. 5 and 
a numerical integration routine. It is then difficult to relate the observed capacity 
factor to the local capacity factor. This problem is still under investigation. It is also 
possible that Darcy’s law may not be applicable when pressure drops are high since 
high mobile-phase velocities may lead to turbulence. A simpler expression for the core 
of the distribution function would lead to more tractable expressions for both the 
density averages and the apparent capacity factor. 
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