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ABSTRACT

Equations derived in Part I [D. E. Martire, J. Chromatogr., 461 (1989) 165] are used to calculate
distribution functions, average densities and column profiles for supercritical fluid chromatography with
carbon dioxide as the mobile phase. An approximation for the column-average capacity factor in terms of
the local capacity factor is evaluated and conditions are given for its applicability.

INTRODUCTION

General equations have been derived for the spatial and temporal density
distribution functions, average densities and column profiles of the mobile-phase fluid,
and for the observed (apparent) capacity factors and column profiles of the solute
components [1]. These equations are valid for all conditions where Darcy’s law is valid,
i.e., as long as the flow is laminar and not turbulent. It has been shown in Part I [1] that
the application of these equations is straightforward in the cases of gas and liquid
chromatography. In capillary supercritical fluid chromatography (SFC), pressure
drops over the length of the column are usually so small that the average density is close
to the inlet density. Thus, the most interesting application is in packed-column SFC
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because of the large pressure drops involved and the non-ideality and compressibility
of the mobile phase.

In the present study, the equations are applied to SFC with carbon dioxide as the
mobile phase. In order to apply these equations, reliable density, isothermal
compressibility and viscosity data for the mobile phase are needed. A modified
Benedict-Webb—Rubin (BWR) equation of state [2] was used to generate densities and
isothermal compressibilities; available viscosity data were used to fit a polynomial
expression for viscosity in terms of density and temperature. For a given inlet pressure,
the outlet pressure will depend on several variables: the column length, type and
porosity of packing, type of back-pressure regulator or restrictor used, etc. In this
study, various inlet and outlet pressures were assumed and distribution functions,
density averages and column profiles for the mobile phase were calculated. In order to
generate average capacity factors and column profiles for the solutes, an expression for
the local capacity factor was assumed.

The following equations from ref. 1 (written here in reduced form) are used in
this study:

The spatial distribution function D,(pgr)

D.(pr) = n& ' pr(0Pr/0pr)T (1

The temporal distribution function D,(pg)

Di(pr) = ng * pR(OPr/0pr)T ()

The spatial average mobile phase density <pgr>,

PR, PR,

<PR>x = j prD(pr)dpr/ j D,(pr)dpr 3)

Pr0 Pro
The temporal average mobile phase density, <pgr>,

PR Pr.i

<pr>:= j prD(pr)dpr/ ,f D(pr)dpr 4)

PR,0 Pro

The observed capacity factor, <k'>,

PR.i PR

<k'> = _f k'Dy(pr)dpr/ _f D((pr)dpr &)

PR,0 PR,0
The fractional distance, x/L, when the local mobile phase density is pg

Pr.i PR,

x/L = ij(PR)dPR/ j D,(pr)dpr (6)

Pr Pr.o
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The fractional time, 7,/¢,, an unretained solute has spent on the column when the local
density is pg

PR, Pri
to/ta = [ Ddpr)dpr/ | D(pr)dpr )
Pr PR.0

The fractional solute migration time, t /f,, at pg

PR,i PR,

1ty = [ (1 + k)D(pr)dpr/ § (1 + kK)Dpr)dpr 3

Pr.o

In these equations the density (p), pressure (P) and viscosity () are normalized
to reduced variables: pg = p/pe, Pr = P/P., ng = n/n° where p., = 0.468 g/cm?3,
T, = 304.2K, P, = 73.84 bar and 5° is chosen as the viscosity at one bar for a given
temperature. L refers to the column length measured from the inlet, #, the holdup time
of an unretained solute, 7, the solute retention time, k' the local capacity factor; the
subscripts i and o refer to inlet and outlet conditions, respectively. The quantity
& (0Pg/dpg)r which appears in both distribution functions will be referred to as the
“core” of the distribution function.

The observed or apparent capacity factor is related to the local capacity factor
and conditions are given for an approximation for the observed capacity factor in
terms of the temporal average density. In addition, the separation factor, «, for two
solutes a and b is calculated from

- <k >, ©)

<k'>,
THE EQUATION OF STATE

The Jacobsen—Stewart modification [2,3] of the BWR equation of state was used
to generate reliable density (p) and isotherm derivative, (0 Pg/dpg)r, predictions:

32

P=pRT + ¥ NiX; (10)
i=1
32
(0P/op)r = RT + ¥ N.X; (11)

i=1

where X = (0X,/0p)r.

The N; coefficients for CO, were obtained from ref. 3 and are reproduced in
column 2 of Table I. Expressions for the X; and X] are given in columns 3 and 4 of Table
I. p is the density in mol/l; P the pressure in bar, T the temperature in Kelvin; R =
0.083144 bar - I/mol- K. The equations are applicable for a temperature range from
215 to 1100 K and from 0 to 3000 bar with an overall accuracy of 0.3% in density [3].
Since the equation is explicit in pressure, density predictions were obtained using the
bisection method [4].
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TABLE 1
COEFFICIENTS AND EXPRESSIONS OF EXTENDED BWR EQUATION FOR CO,*

F = exp(—Gp?); G = 0.88999644 . 10~ 2, F' = —2.0FpG; F21 = 3.0Fp? + F'p® F22 = 5.0Fp* + F'p®
F23 = 7.0Fp® + F'p7; F24 = 9.0Fp® + F'p°% F25 = [1.0Fp'® + F'p'l; F26 = 13.0Fp'? + F'p'3,

i N X X'

1 —0.9818510658 - 102 p*T 2.0pT

2 0.9950622673 p2T2 2.0pT"2

3 —0.2283801603 - 102 0? 2.0p

4 0.2818276345- 10* T 2.0p/T

5 —0.3470012627 - 10® p?T? 2.0p/T?

6 0.3947067091 - 1073 0’T 3.00°T

7 —0.3255500001 IS 3.0p%

8 4,843200831 3T 3.003/T

9 —0.3521815430- 10° p?|T? 3.0p2/T?
10 —0.3240536033- 1074 p*T 4.0p°T
11 0.4685966847- 10~ 1 ot 4.0p°
12 —7.545470121 0T 4.0p3/T
13 —0.381894354- 104 0° 5.0p*
14 —0.4421929339- 107! 08T 6.0p%/T
15 0.5169251681 - 10? p8/T? 6.0p°/T?
16 0.2124509852- 102 o|T 7.00%/T
17 —0.2610094748 - 10~ o%/T 8.007/T
18 —0.888533389 107! o8/ T? 8.007/T?
19 0.1552261794- 1072 p°|T? 9.0p%/T?
20 0.4150910049 - 10° pF|T? F21/T?
21 —0.1101739675- 108 p3F|T? R1/T?
22 0.2919905833 - 10* p°F|T? F22I|T?
23 0.1432546065 10° p°F|T* F22/T
24 0.1085742075 - 10? o F/T? R3/T?
25 —0.247799657 - 10 p'FIT? F3/T°
26 0.1992935908 - 107} p°F|T? F24/T?
27 0.1027499081 - 103 p°F/T* F4T*
28 0.3776188652 107 pUIF/T? F25/T?
29 —0.3322765123- 102 p'\FIT? F25/T?
30 0.179196707t - 1077 PV FIT? F26/T*
31 0.9450766278 - 1073 pV3F|T? F26/T?
32 —0.1234009431 - 1072 p'3F/T* F26/T*

@ See eqns. 10 and 11.

VISCOSITY

Viscosities were obtained by fitting tabulated viscosity data [5] to the equation
4 4 .
R = z 2 ¢i i Thpr (12)
i=0j=0

The ¢; ; coefficients for CO, are listed in Table I1. The fit is applicable for pressures
from 40 to 1000 bar over the temperature range 315 to 900 K with an average error of
0.4%.
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TABLE I1

COEFFICIENTS OF 5z VISCOSITY EQUATION FOR CO,, ¢;}*

139

i Cij i Cij

0o 0 1.984239055923858 2 3 —6.962674520424649
0 1 —1.765978814900643 2 4 0.7797272269308236
0 2 1.200587190352171 3 0 —15.836119060967

0 3 —0.3587967344551215 3 1 26.17032056108262

0o 4 3.939799401399628 - 102 3 2 —17.42070707993796

1 0 —6.939097844205919 3 3 5.402335087741039
1 1 12.16864979120884 3 4 —0.6352935554972202
1 2 —7.954279939480736 4 0 4.337989765743405
I 3 2.311176553431279 4 1 —7.058859850635407
1 4 —0.2499449770969321 4 2 4.866472957964851
2 0 22.0798196307882 4 3 —1.607823031693741
2 1 —35.92289143102958 4 4 0.2014049388370968
2 2 23.41530455411397

4 See eqn. 12.

3
= 2 Tk
=0

For the calculation of reduced viscosity from #/%°, a fit of 5° vs. Ty was
completed, where 5° was selected as the viscosity at 1 bar. The relation is

(13)

The a; coefficients are given in Table III. Figs. 1 and 2 show the relationship of viscosity

to pressure and density, respectively.

THE CORE OF THE DISTRIBUTION FUNCTION

In order to obtain a tractable expression for the core of the distribution function

for use in the integral equations, the expression 5z 1(0Pg/dpr) was evaluated using the
equation of state and tabulated viscosity data [5] and fit to a seventh-order polynomial

TABLE 111

COEFFICIENTS OF r° (10~ ¢ Ns/m?) VISCOSITY EQUATION FOR CO,"

J

aj

(10~% Ns/m?)

W - O

—1.842303556958221

19.94110352045899

—3.288620563501078

0.3299574285621828

% See eqn. 13.
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Fig. 1. Relationship between reduced viscosity and reduced pressure of CO, at 320, 350 and 380 K.

in reduced density at a given temperature. The resulting equation for the core of the
distribution function is

7

1 .
a(aPn/apn)r = 3 dDypk (14)

j=0

The coefficients for selected temperatures from 320 to 500 K are given for CO, in Table
IV. This method has the advantage of yielding analytically solvable integrals for the
density averages, but the disadvantage of requiring a temperature-dependent set of
coefficients. The equation of state and viscosity equations may be used to calculate
these coefficients at any desired temperature. Alternatively, the integrals may be
evaluated numerically at any temperature and pressure using the equation of state to
obtain (#Pg/dpr)r and eqn. 12 to obtain ng 1.
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Fig. 2. Relationship between reduced viscosity and reduced density of CO, at 320, 350 and 380 K.
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TABLE IV
COEFFICIENTS OF THE CORE OF THE DISTRIBUTION FUNCTION, 5, '(9Px/dpr)r, FOR CO,

T 0 1 2 3 4 5 6 7

315 3.430721 —5436177 —14.063478  50.004813 —61.078887  37.082152 ~—11.123848  1.315836
318 3.449651  —5.165713 —14.619629  50.386233 —61.179006  37.156443 —11.184187  1.329785
320 3.468362  —5.035216 —14.898416  50.693615 —61.520404  37.471557 ~—11.330728  1.354716
323 3.507241  —4981013  —14.660994  49.710760 —60.361265  36.903599 —11.220950  1.350461
325 3.529547  —4.900966 —14.704797  49.488739 —60.065716  36.806435 —11.232691 1.357955
328  3.567610  —4.835326 —14.554064  48.740216 —59.183956  36.402942 ~—11.171629  1.359514
330  3.594037 —-4.805044 —14.400660 48.137436 —58.477669  36.057054 —11.105119  1.357108
333 3.634926 —4.775353 —14.113013  47.128036 —57.301045 35461413 -—10.978996  1.349891
335 3.663093 —4.767234 —13.876192  46.368154 —56.417075 34998493 —10.872244  1.341962
340 3.735941  —4.779590 —13.157321  44.218988 —53.909728  33.635421 —10.531496  1.311594
345 3.811424  —4.829204 —12.292277  41.775228 —51.034637  32.005334 —10.090694  1.266392
350 3.888584  —4.904933 —11.324438  39.117654 —47.871881  30.149953  —9.560026  1.207156
355 3.966580 —4.996535 —10.295859  36.329849 —44.511071  28.120857 —8.954059  1.135399

360 4.044703  —5.094889 —9.245997  33.495104 —41.047809 25977564  —8.291338  1.053338
365 4122378 —5.192201 —8.210274  30.692525 —37.578626  23.784241  —-7.593386  0.963788
370 4.199161  —5.282081 —7.219233  27.994251 —34.196937  21.606888  —6.883810  0.870070
375 4274729  —5.359553 —6.297969 25463207 —30.989408  19.510516  —6.187295  0.775874
380 4.348880 —5.421136 —5.465210  23.149812 —28.030595  17.554815  —5.527916  0.685023
385 4421507  —5.464634 —4.733836  21.092105 —25.381855  15.792668  —4.928420  0.601345
390 44925890  —5.489028 —4.111053  19.315239 —23.089491 14.268038  —4.409205  0.528503
395 4562169  —5.494315 —3.598799  17.831406 —21.183243  13.013900 —3.987211  0.469786
400 4.630341  —5.481284 —3.194661 16.641477 —19.677496  12.052323  —3.675652  0.428020
410 4.762983  —5.406185 —2.684254  15.098625 —17.853463  11.039525  —3.415627  0.403671
420 4.891684  —5.278686 —2.504810  14.525946 —17.471506  11.193787  —3.650242  0.465356
430 5.017609  —5.115442 —2.563619  14.691491 —18.248922  12.347147  —4.339176  0.612149
440 5.141729  —4.931525 —2.769727  15.344966 —19.838448  14.248806  —5.395477  0.833515
450 5.264761  —4.738747 —3.046140  16.257123 —21.891474 16.616550 —6.705176  1.111919
460 5.387171  —4.545277 —3.334909  17.241746 —24.101283  19.178477 —8.146164  1.425930
470 5.509227 —4.356014 —3.597456  18.163942 —26.227172  21.702104  —9.603891  1.753273
480 5.631051  —4.173312 —~3.811609 18937261 —28.100147  24.008383 —10.981440  2.073214
490 5.752686  —3.997791 —3.967820  19.516300 —29.618699 25975777 —12.205201  2.368296
500 5.874126  —3.829018 —~4.064945. 19.885808 —30.735909  27.534386 —13.225300  2.625066
510 5995350  —3.666042 —4.107097  20.051584 —31.446624  28.657725 —14.014026  2.834337
520 6.116340  —3.507723 —~4.101016  20.032035 —31.774063  29.352199 —14.562299  2.990911
530 6.237089  —3.352985 —~4.054338  19.851937 —31.758491  29.646665 —14.875213  3.092957
540 6.357602  —3.200899 —3.974493  19.538255 —31.449228  29.584628 —14.968485  3.141461
550 6.477901  —3.050744 —3.868163  19.117157 —30.897801  29.216445 —14.864230  3.139390
560  6.598021  —2.902022 —3.740895  18.612604 —30.154598  28.595194 —14.588566  3.091189
570 6.718008  —2.754413 —3.597292  18.045621 —29.266003  27.772556 —14.168946  3.002157
580 6.837917  —2.607786 —3.440735  17.433791 --28.273103  26.796665 —13.632527  2.877999
590 6.957805  —2.462108 —3.273899  16.791695 —27.211291 25710798 —13.005036  2.724506
600 7.077740  —2.317489 ~3.098509  16.130949 —26.110274 24.552744 —12.309946  2.547261

The core of the distribution function is shown as a function of pressure and
density in Figs. 3 and 4, respectively.
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Fig. 3. Relationship between the “core” of the distribution function and reduced pressure for CO; at 320,
350 and 380 K.

COLUMN AVERAGES

Typical inlet and outlet pressures were selected and the corresponding densities
calculated from the equation of state. The positional and temporal average densities
were calculated using the seventh-order polynomial for the core of the distribution
function (eqn. 14):

The mean density

; _ Pri '*2' Pr,0 (15)

The spatial average density

J

10 9
<PrRZx = Z Cj—a(Pl'i,i - P{z,o)/j/ 22 Cj—z(ﬂf't,i - P{z,o)/j (16)
=3 j=

3.2} 0
350 320

0.8}

Core of the Distribution Function

0.0 . ) A
0.0 0.5 1.0 1.5 2.0 25
Reduced Density

Fig. 4. Relationship between the ““core” of the distribution function and reduced density for CO_ at 320, 350
and 380 K.
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The temporal average density
11 . ) 10 . .
<Ppr>:= Z ci-alph, — Pﬁ,o)/j/ z cj-3(pk; — pho)lj an
j=4 j=3

Table V summarizes the results for selected outlet and inlet pressures at 320 K. Note
that for a pressure drop of 50 bar, there is a significant difference between the
positional and temporal average densities for low outlet densities, but they are
essentially equal if the outlet density is high.

COLUMN AVERAGE (OBSERVED) CAPACITY FACTOR

The observed or apparent capacity factor was calculated assuming the form
klocal = koexp(ap + bp?) for the local capacity factor, where ki refers to the
zero-density value. The constants for this expression were calculated for heptadecane
and octadecane from ref. 6:

Inkl = —(4.43 + 0.784n) + [(1.09 + 1.676n)/Tx]

a = (0.40 + 0.595n) — (0.97 + 1.448n)/ Ty

b = (0.17 + 0.260n)/ Ty (18)

TABLE V
AVERAGE DENSITIES AT 320 K

P; Pr.i Py Pr,0 PR® <pr> <pr>
(bar) (bar)

80 0.49 70 0.38 0.44 0.44 0.44
90 0.67 70 0.38 0.53 0.51 0.53
100 0.96 70 0.38 0.67 0.62 0.67
110 1.21 70 0.38 0.80 0.76 0:85
120 1.35 70 0.38 0.87 0.88 0.99
130 1.44 70 0.38 0.91 0.97 1.09
110 1.21 100 0.96 1.08 1.10 1.10
120 1.35 100 0.96 1.16 1.19 1.20
130 1.44 100 0.96 1.20 1.26 1.28
140 1.51 100 0.96 1.23 1.31 1.33
150 1.56 100 0.96 1.26 1.35 1.37
160 1.60 100 0.96 1.28 1.39 1.41
140 1.51 130 1.44 1.48 1.48 1.48
150 1.56 130 1.44 1.50 1.50 1.51
160 1.60 130 1.44 1.52 1.53 1.53
170 1.63 130 1.44 1.54 1.55 1.55
180 1.66 130 1.44 1.55 1.57 1.57
190 1.69 130 1.44 1.57 1.59 1.59
? See eqn. 15.
b See eqn. 16.

¢ See eqn. 17.
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where n = number of carbon atoms in the alkane. The numerator in eqn. 5 was
evaluated numerically using a numerical integration routine [7].
The separation factor, «, for heptadecane and octadecane was calculated from

v <k'>.c,, (19)

<k'>,c,
The approximation

<k'>,~ koexpla<pr>:+ b<pi>)
or
In <k'>,~Inko +a<pr>,+ b<pi>, 20)

was tested. As expected [1], the estimated value is always less than or equal to the value
for In <k’>, calculated from eqn. 5, and is essentially equal to the calculated value if
the outlet density is close to the inlet density (as in capillary SFC) or if the outlet density
is significantly greater than the critical density (Fig. 5). Fhe estimated « values are also
close to the calculated values under these conditions. In general, low densities
produce higher « values. For a given outlet pressure, low density drops also produce
higher o values. Although high densities and/or high density drops lead to shorter
analysis times, large density drops are undesirable because they may lead to greater
band broadening [8]. As long as the chromatographic conditions are in the region
where the estimates are close to the calculated values, both In <k’> and a can be easily
estimated for a given set of conditions if the local capacity factors are known. The
temporal average density can be replaced by the arithmetic mean density, thus
simplifying the calculation. However, the column average density is significantly
different from the inlet density, so the capacity factor cannot be approximated using
the inlet density alone. The results are summarized in Table VI where column 1 is the
temporal average density from Table V.

4.5
3.9
33 ¢
2.7
2.1t
1.5F

In<k’>

0.9

0.3}

-0.3

_09 -

-15 —
1

0 15 20 25 30 35 40 45 50 55 60
Pressure Drop (bar)

Fig. 5. Average capacity factor as a function of pressure drop. ((J) Calculated from eqn. 5; (+ ) estimated
from eqn. 20. (a) P, = 70 bar; (b) P, = 100 bar; (c) P, = 130 bar.



SPATIAL AND TEMPORAL COLUMN PARAMETERS IN GC, LC AND SFC. IL. 145

TABLE VI
CALCULATED AND ESTIMATED In <k'> VALUES

<pg>, In <k'> In <k'> In <k'> In <k'> o o
Num.* Est.® Num.* Est.? Num.* Est.?
C17 C17 C18 C18
Py =70 bar (pgo = 0.38)
0.44 4.42 4.37 4.89 4.83 1.61 1.60
0.53 3.84 3.56 4.29 3.98 1.57 1.53
0.67 3.25 2.44 3.69 2.80 1.56 1.43
0.85 2.74 1.32 3.18 1.62 1.55 1.34
0.99 2.36 0.59 2.80 0.85 1.55 1.29
1.09 2.08 0.15 2.51 0.38 1.54 1.26
P, = 100 bar (pgo = 0.96)
1.10 —0.23 —0.28 —-0.02 —0.07 1.24 1.23
1.20 —0.55 —0.63 —0.35 —0.44 1.22 1.20
.28 —0.72 —0.82 —-0.54 —0.64 1.21 1.19
1.33 —0.84 —0.93 —0.66 -0.76 1.20 1.19
1.37 —-0.92 —1.0! —0.74 —0.84 1.19 1.18
1.41 —0.97 —1.06 —0.80 —0.89 1.19 1.18
Py, = 130 bar (pro = 1.44)
1.48 —1.25 —1.25 —1.09 —1.09 1.16 1.16
1.51 —1.26 —1.26 -~ 111 —1.11 . 1.16
1.53 —1.27 —1.27 —1.12 —1.12 1.16 1.16
1.55 —1.28 —-1.28 —1.12 —1.12 1. 1.16
1.57 —1.27 —1.27 —1.12 —1.12 1.16 I.16
1.59 —-1.27 —-1.27 —1.12 —1.12 1.16 1.+6
¢ Numerical integration of eqn. 5.
b Estimated from eqn. 20.
¢ Determined from numerically integrated values of In <k’>.
d

Determined from estimated values of In <k’>.

COLUMN PROFILES

The density decrease over the column was divided into ten equally spaced density
decrements from the inlet to the outlet density. Profiles for the mobile phase were
generated using eqns. 6 and 7 and the core of the distribution function:

9 9
x/L = Z Cj—Z(p{{,i - P{()/j/ z Cj—z(P{(,i - P{z,o)/f 2n
j=2 j=2
T 10 _ . 10 _ .
t_u = 'Zs ci-3(pk; — Pf{)/]/ 'Za cj-3(pk; — Pk.0)/j (22)

The fractional solute migration time was calculated by numerical integration of eqn. 8.
The results are summarized in Table VII. Note that when the mobile phase has spent
50% of'its time on the column, it has traversed 47% of the column length. At this point,
the reduced density is 1.11, compared to 1.09, the arithmetic mean density. Hence, the
mobile phase spends relatively more time in the inlet region of the column. The solutes
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TABLE VII
COLUMN PROFILES
T = 320K, P, = 100 bar, P, = 110 bar.

Pr x/La ‘ru/tub Ts/tst Ts/tsc ad
Ciy Cis

1.21 0.00 0.00 0.00 0.00 -

1.19 0.13 0.14 0.12 0.12 1.20

1.16 0.25 0.27 0.24 0.23 1.21

1.14 0.37 0.39 0.34 0.33 1.21

1.11 0.47 0.50 0.44 0.43 1.21

1.09 0.57 0.60 0.54 0.53 1.21

1.06 0.66 0.69 0.63 0.62 1.22

1.04 0.75 0.78 0.72 0.71 1.22

1.01 0.84 0.85 0.82 0.81 1.23

0.99 0.92 0.93 0.91 0.90 1.23

0.96 1.00 1.80 1.00 1.00 1.24

¢ See eqn. 21.

b See eqn. 22.

¢ See eqn. 8.

4 See eqn. 19.

are moving relatively more quickly because they have a much smaller k' in the
higher-density inlet part. The effective separation factor, a, which is defined as the ratio
of temporal average capacity factors of the two solutes at a given value of x/L,
increases as the column is traversed. This does not necessarily imply, however, that
longer columns will produce better separations. The change in « is a pressure-drop-
induced effect; the same pressure drop can also cause increased band spreading [8].
Indeed, it is conceivable that shorter columns could provide separations with
resolution equal or superior to that from longer columns.

CONCLUSIONS

If the pressure drop over a column is small, or if the outlet density is sufficiently
greater than the critical density, the arithmetic mean density, the positional average
density and the temporal average density are nearly identical. The average capacity
factor can then be related to the local capacity factor and the average density using any
of the density averages and eqn. 20. However, if the density drop is large and
encompasses the region where the core of the distribution function goes through
a minimum (Fig. 4), the average capacity factor must be calculated using eqn. 5 and
a numerical integration routine. It is then difficult to relate the observed capacity
factor to the local capacity factor. This problem is still under investigation. It is also
possible that Darcy’s law may not be applicable when pressure drops are high since
high mobile-phase velocities may lead to turbulence. A simpler expression for the core
of the distribution function would lead to more tractable expressions for both the
density averages and the apparent capacity factor.
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